Postconditioning: reduction of reperfusion-induced injury.
نویسندگان
چکیده
Reperfusion has the potential to introduce additional injury that is not evident at the end of ischaemia per se, i.e. reperfusion injury. Reperfusion injury is expressed as endothelial and microvascular dysfunction, impaired blood flow, metabolic dysfunction, cellular necrosis, and apoptosis. There is an impressive array of mechanisms contributing to reperfusion injury. Postconditioning, defined as brief periods of reperfusion alternating with re-occlusion applied during the very early minutes of reperfusion, mechanically alters the hydrodynamics of early reperfusion. However, postconditioning also stimulates endogenous mechanisms that attenuate the multiple manifestations of reperfusion injury listed above. These mechanisms include ligands, such as adenosine and opioids, that act as proximal triggers to stimulate molecular pathways involving mediators such as protein kinase C, mitochondrial ATP-sensitive potassium channels, and survival kinases. Postconditioning may also inhibit deleterious pathways such as p38 and JNK mitogen-activated protein (MAP) kinases and attenuate the damage to endothelial cells and cardiomyocytes from oxidants, cytokines, proteases, and inflammatory cells. Postconditioning has been shown to inhibit the mitochondrial permeability transition pore. Hence, postconditioning marshals a variety of endogenous mechanisms that operate at numerous levels and target a broad range of pathological mechanisms. Two clinical studies in patients with acute myocardial infarction have demonstrated that postconditioning was effective in reducing infarct size. Postconditioning indirectly supports the concept of reperfusion injury in animal models of ischaemia-reperfusion and in patients, and exerts cardioprotection that is equivalent to that of ischaemic preconditioning.
منابع مشابه
Exploring the role of dimethylarginine dimethylaminohydrolase-mediated reduction in tissue asymmetrical dimethylarginine levels in cardio-protective mechanism of ischaemic postconditioning in rats
Objective(s): Reperfusion of ischaemic myocardium results in reduced nitric oxide (NO) biosynthesis by endothelial nitric oxide synthase (eNOS) leading to endothelial dysfunction and subsequent tissue damage. Impaired NO biosynthesis may be partly due to increased levels of asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of eNOS. As dimethylarginine dimet...
متن کاملPathophysiology of Ischemia/Reperfusion-induced Myocardial Injury: What We Have Learned From Preconditioning and Postconditioning?
Organ damage after reperfusion of previously viable ischemic tissues is defined as ischemia/reperfusion injury. The pathophysiology of ischemia/reperfusion injury involves cellular effect of ischemia, reactive oxygen species and inflammatory cascade. Protection against ischemia/reperfusion injury may be achieved by preconditioning or postconditioning. In this review, we discuss basic mechan...
متن کاملCombined postconditioning with ischemia and cyclosporine-A restore oxidative stress and histopathological changes in reperfusion injury of diabetic myocardium
Objective(s): Chronic diabetes impedes cardioprotection in reperfusion injury and hence protecting the diabetic heart would have important outcomes. In this study, we evaluated whether combined postconditioning with ischemia and cyclosporine-A can restore oxidative stress and histopathological changes in reperfusion injury of the diabetic myocardium. Materials and Methods: Streptozocin-induced ...
متن کاملIschemic Postconditioning Attenuates Bilateral Renal Ischemia-Induced Cognitive Impairments
Background and aim: Acute kidney injury (AKI) is a frequent complication of kidney failure with high mortality which leads to brain dysfunction. The aim of this study was to investigate the possible protective effect of ischemic postconditioning (IPo) against brain dysfunction induced by bilateral renal ischemia (BRI). Materials and methods: Male Wistar rats underwent BRI, sham or IPo surgery ...
متن کاملRetinal neuroprotection against ischemia-reperfusion damage induced by postconditioning.
PURPOSE Retinal ischemia may provoke blindness. There is no effective treatment against retinal ischemic damage. The authors investigated whether brief intermittent ischemia applied during the onset of reperfusion (i.e., postconditioning) protects the retina from ischemia-reperfusion damage. METHODS Ischemia was induced by increasing intraocular pressure (120 mm Hg for 40 or 60 minutes). Five...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 70 2 شماره
صفحات -
تاریخ انتشار 2006